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DYNAMICS OF A BUBBLE IN A LIQUID UNDER LASER PULSE ACTION

UDC 533.2I. Sh. Akhatov, N. K. Vakhitova, and A. S. Topol’nikov

Simulation was performed of the behavior of a vapor bubble in a liquid under laser irradiation in
laboratory experiments. A mathematical model was developed to analyze the effect of heat conduction,
diffusion, and mass transfer on the bubble dynamics under compression and expansion. It is found
that at the stage of collapse, intense condensation occurs on the bubble wall, which results in a
significant (more than 15-fold) decrease in bubble mass and an increase in pressure (to 105 atm) and
temperature (to 104 K). Results of numerical calculations of the radius of the first rebound and the
amplitude of the divergent shock wave in water are compared with experimental data. It is shown that
small (about 1%) additives of an incondensable gas lead to a considerable decrease in mass transfer
on the bubble wall.

Introduction. Short-term laser-pulse irradiation of water causes formation of a bubble nucleus in the focal
zone, whose further dynamics is determined by heat- and mass-transfer processes. At first, the size of the nucleus
increases due to evaporation of the liquid on the bubble wall. Having reached a certain critical radius and cooled to
the temperature of the ambient water, the bubble collapses because of the difference between the saturated vapor
pressure and atmospheric pressure in the liquid. Compression is accompanied by vapor condensation and an increase
in both pressure and temperature inside the bubble. After the collapse, the bubble expands again and performs
several damped oscillations. It is found experimentally that the first collapse of the bubble is accompanied by a
light flash with a duration of more than 1 nsec [1, 2], and the number of emitted photons is of the order of 108 [3].
Simultaneously, a divergent shock wave is formed in water, whose intensity is proportional to the maximum radius
of bubble extension [4].

Experimental measurements are greatly hampered by the local pattern and rapidity of the process. Hence,
theoretical simulation of this process based on numerical calculations is of primary importance. As has been shown in
several recent studies of a similar process — the sonoluminescence of a single gas bubble in a liquid — to adequately
describe the behavior of a bubble in a liquid, it is necessary to account for many hydrodynamical aspects, such
as the compressibility of a medium, including shock-wave compressibility, heat and mass transfer, diffusion, and
chemical reactions with participation of gas components [5–8].

The present paper proposes a mathematical model that describes the dynamics of bubble oscillations in water
under laser pulse action. The basis of the model is the assumption of spherical symmetry of the bubble gas and the
ambient liquid. This motion is generally described by partial differential equations that express the conservation
laws of continuum mechanics taking into account heat conduction and diffusion. The rate of mass transfer on the
bubble wall due to vaporization and condensation is determined in accordance with the nonequilibrium Hertz–
Knudsen–Langmuir model.

1. Dynamics of a Vapor Bubble. We assume that at the initial time, the bubble is at the point of
maximum expansion, the vapor temperature is equal to the temperature of the ambient liquid, and the pressure
inside the bubble coincides with the saturated vapor pressure at the given temperature. Since under normal
conditions (atmospheric pressure and room temperature) the saturated vapor pressure (roughly 0.02 atm) is well
below the water pressure, the bubble begins to collapse.
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To simulate the problem, the entire spatial region is divided into three subregions along the radial coordinate
according to the algorithm proposed in [9, 10]: subregion 1 [0 6 r 6 a(t)] occupied by vapor [a(t) is the bubble
radius], subregion 2 [a(t) < r 6 R(t)] occupied by water and bounded by a certain, intentionally introduced
Lagrangian boundary, and subregion 3 [R(t) < r <∞] filled with a poorly compressible liquid. The R(t) is chosen
such that during the entire cycle of bubble oscillations, the rate of change of Ṙ(t) remains low compared to the speed
of sound in water. In this case, the law of variation of R(t) is defined by an equation similar to the Rayleigh–Plesset
equation. In the present paper, we set R0 = 1.5a0 (a0 is the initial bubble radius).

To describe the parameters of the vapor inside the bubble for r 6 a(t) and those of the water in the
region a(t) 6 r 6 R(t) adjoining the bubble surface, we consider the system of partial differential equations taking
into account heat conduction in the spherical symmetry approximation:
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Here ρ, u, p, T , and e are the density, rate, pressure, temperature, and specific total energy per unit volume,
respectively, and λ is the thermal conductivity.

System (1), (2) is closed by the equations of state for the vapor and water. In the present paper, for the
vapor, we used the Van der Waals relation
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where Bv = 458.9 J/(kg ·K), b1 = 1.694 · 10−3 m3/kg, b2 = 1708.6 J ·m3/kg2, and γ = 1.3.
To describe the parameters of the water, we use the Mie–Grüneisen equation of state, which provides for good

agreement between calculation results and experimental data for the region of strong compression and moderate
expansion [10]:
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the values A = 3.492 · 108 Pa, K = 8.283 · 108 Pa, b = 16.0558, cv = 3270 J/(kg ·K), and ρl0 = 998 kg/m3 are
chosen so as to provide for a best fit to experimental data, and Γ(ρl) is the Grüneisen coefficient specified as an
analytical function of density.

Boundary conditions for the bubble surface are formulated with allowance for vaporization and condensation
that occur there. Equating heat fluxes, we obtain the equation relating the temperature gradients for the vapor
and water:
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Here l is the specific heat of vaporization and j is the phase-transfer rate during vaporization and condensation:

j = (α/
√

2πBv)(pS(Tl|r=a)/
√
Tl|r=a − Γvpv|r=a/

√
Tv|r=a ), (4)

which is expressed by the generalized Hertz–Knudsen–Langmuir equality taking into account the corrections for the
mobility of the interface [11]:
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Generally, we introduce a temperature jump on the bubble wall:
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Fig. 1 Fig. 2

Fig. 1. Bubble radius (solid curve) and vapor mass (dashed curve) versus time at a0 = 1 mm and α = 0.075 (the
points refer to the moments of transition from the slow stage to the rapid stage and vice versa).

Fig. 2. Spatial distributions of temperature near collapse for a0 = 1 mm and α = 0.075 and t = −4.76 (1),
0.45 (2), and 7.22 nsec (3); the points correspond to the temperature in the calculation cells.

For r = a(t), the velocities and pressures of the vapor and liquid are related by

uv|r=a = ȧ− j/ρv|r=a, ul|r=a = ȧ− j/ρl|r=a,

pv|r=a = pl|r=a + 2σ/a+ 4µlul|r=a/a = pl|r=a + 2σ/a+ (4µl/a)(ȧ− j/ρl),

where σ and µl are the surface tension and dynamic viscosity of the water, respectively.
The variation of the external radius of the compressed liquid region R(t) is expressed by the generalized

Rayleigh–Plesset equality [12](
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where Cl = 1500 m/sec is the speed of sound in water and pl0 = 1 atm is the initial pressure in the liquid.
In the present paper, values of the thermodynamic coefficients for the vapor and water (λv, λl, µl, σ, pS ,

and l) are approximated by analytical formulas based on well-known tabular data [13].
Numerical integration of the system of differential equations (1) and (2) in the region 0 6 r 6 R(t) for the

entire period of bubble oscillations is too tedious and time-consuming. Therefore, at the slow stage of the process,
which is characterized by low Mach numbers, a homobaric approximation for vapor and the incompressibility
condition for the water are used instead of equalities (1) and (2) [14]. As a result, the full system of differential
equations is solved only for a narrow time interval in which the compression–extension bubble rate is comparable
to the speed of sound in vapor.

Calculations for the homobaric model are performed using an implicit finite-difference scheme of second-
order approximation, and the Rayleigh–Plesset equation (5) is solved by the Runge–Kutta method of fifth-order
accuracy. The full system of Eqs. (1) and (2) is solved numerically using Godunov’s scheme.

Figures 1 and 2 show results of numerical calculations of the collapse of a vapor bubble with a0 = 1 mm.
At the initial moment, the vapor inside the bubble is in the saturation state at the specified liquid tempera-
ture Tl0 = 296 K. Figure 1 shows curves of bubble radius and vapor mass m versus time. The points refer to the
moments of conversion from calculations by simplified models describing the medium (the homobaric model for the
vapor and the model of an incompressible liquid for the water) to calculations by the full model and vice versa.
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Fig. 3. Maximum first rebound radius (a) and shock-wave amplitude in the water at a distance
of 3 mm from the center of the bubble (b) versus initial bubble radius: points 1 are experimental
results and points 2 are calculated values.

During collapse, the minimum bubble radius is 14 µm and the vapor mass is roughly 6% of the initial value. The
latter is accounted for by vapor condensation on the bubble wall during collapse; the condensation rate is given
by Eq. (4). The accommodation coefficient α in (4) such that the calculation results fit the experimental data. In
this paper, this coefficient is equal to 0.075 and is determined from the experimental values of the first rebound for
initial bubble radius a0 = 1 mm.

We note that because of condensation at the stage of compression, the bubble pressure grows not so rapidly
as in the case of a gas bubble with a constant mass. As a result, a deeper collapse is possible, and, consequently,
much higher pressure and temperature can be reached inside the bubble.

Figure 2 shows temperature distributions along the radius in the vapor and liquid for three sequential
moments close to the moment when the radius reached its minimum value. During collapse, the gas inside the
bubble is heated almost uniformly, except in a thin boundary layer near the surface, where the temperature decreases
abruptly to the water temperature. This results in a decrease in the probability of formation of a convergent shock
wave in the bubble because any nonlinear excitation on the surface, propagating toward the center of the bubble,
reaches the region with increasing speed of sound and then degenerates to a weakly acoustic excitation. The
calculation results show that during expansion, the bubble generates a shock wave in the water (curve 3 in Fig. 2).
The maximum vapor pressure and temperature in the center of the bubble are 105 atm and 104 K, respectively.

The calculation results presented in this paper were compared to the experimental data of [4, 15]. Figure 3
show curves of the maximum bubble radius during the first rebound and the amplitude of the divergent shock wave
in the water (at a distance of 3 mm from the center of the bubble) versus initial bubble size.

2. Effect of Incondensable Gas Additives. Under experimental conditions, the bubble generated by a
laser pulse contains not only water vapor but also additives of other gases. These gases can result from recombination
of plasma after laser beam focusing, chemical reactions inside the bubble or diffusion from the ambient liquid. To
estimate the effect of the incondensable gas on the dynamics of a vapor cavity, we consider the model of a two-
component vapor–gas medium inside the bubble.

In this case, Eqs. (1) describe the laws of conservation of mass and momentum for the entire mixture. With
allowance for diffusive additives, the energy equation is written as
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where k and D are the vapor mass fraction and the binary diffusion coefficient for this mixture, respectively,
i = ε+p/ρ is the enthalpy, and the subscripts “v” and “g” refer to the parameters of the vapor and gas, respectively.
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To calculate k, we write the equation of binary diffusion in the form
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The relationship between the parameters of the individual components and the entire mixture is specified
by the following equalities: ρv = kρ, ρg = (1 − k)ρ, u = kuv + (1 − k)ug, p = pv + pg, ε = kεv + (1 − k)εg,
ρv(u− uv) = −ρg(u− ug) = ρD ∂k/∂r, and T = Tv = Tg.

As the incondensable gas, we consider air. We write the equation of state for air, as for water vapor, in
the form of the van der Waals dependence (3), in which we set Bg = 284.75 J/(kg ·K), b1g = 1.294 · 10−3 m3/kg,
b2g = 166.7 J ·m3/kg2, and γg = 1.4. The binary diffusion coefficient for water vapor in air is defined as a function
of temperature: D = 2.16 · 10−5(T/273)1.8.

The mass fraction of the vapor–gas mixture components can vary during bubble oscillations not only due to
vaporization or condensation but also due to diffusion of the gas from the liquid through the bubble wall.

We consider the diffusion equation for air in water in the form
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with the boundary conditions

c|r=∞ = c∞, c|r=a(t) = ca(t),

where c is the gas mass fraction and Dl is the diffusion coefficient.
The solution of Eq. (6) can be approximately written as

c(r, t) = c∞ + (ca(t)− c∞) exp (−(r − a(t))/δ(t)), (7)

where δ is the effective thickness of the diffusion layer near the bubble surface. Substituting (7) into (6), we obtain
the following estimate for the increase in gas mass inside the bubble:

∆mg ≈ 4
√

2Dl∆t πa2
maxc∞ρl0,

where ∆t is the time of bubble oscillations. For the following characteristic values of the parameters: Dl ≈
10−9 m2/sec, ∆t ≈ 10−4 sec, amax ≈ 10−3 m, and c∞ ≈ 10−5, we have ∆mg ≈ 5 · 10−14 kg, which is 3 or 4 orders
of magnitude smaller than the value of the initial bubble mass (see Fig. 1).

Thus, the estimate of the intensity of gas diffusion from the water into the bubble shows that this process
does not have a significant effect on the solution during one period of bubble oscillations. This is supported by
experimental measurements, which show that the light pulse intensity — one of the principal characteristics of the
process — does not depend on the sort and mass of the gas dissolved in the water [2]. Therefore, in the present
work, we assume that air diffusion through the bubble wall is absent.

Numerical calculations of the problem for a two-component gas mixture were performed for initial gas
concentrations of the order of 1%. The remaining parameters were the same as those for a vapor bubble. Calculations
for collapse of a bubble with a0 = 1 mm and k0 = 0.99 yielded the following values of the principal characteristics:
a minimum radius of 16.5 µm, a first rebound radius of 360 µm, and a collapsing bubble mass of 8 · 10−12 kg.
Comparison of these results with the values obtained for a vapor bubble (14 µm, 290 µm, and 5.5 · 10−12 kg,
respectively) shows that addition of a small amount of gas leads to considerable changes in the solution.

To explain the effect observed, we consider the spatial distribution of vapor concentration at the stage of
bubble compression. Figure 4 shows that the vapor concentration is uniform (k = 0.99) virtually over the entire
region occupied by the bubble, except in a small neighborhood near the bubble wall, where the gas concentration
decreases abruptly (by 30–40%). As a result of such distribution, a thin boundary layer with a high gas content
forms near the interface, which leads to a significant decrease in mass transfer. Figure 5 shows curves of rebound
radius and maximum temperature of the mixture at the center of the bubble versus initial gas concentration. An
increase in initial gas concentration from 0 to 10% leads to an increase in amax from 290 to 620 µm and to a
corresponding decrease in the peak temperature from 104 to 5.2 · 103 K.

Conclusions. A mathematical model is proposed that describes spherically symmetric motion of a bubble
in a liquid taking into account heat and mass transfer for a two-component gas mixture.

The laser-induced collapse of a spherical vapor cavity in water is numerically calculated on the basis of the
model proposed. It is shown that the dynamics of the bubble is largely determined by vaporization and condensation
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Fig. 4 Fig. 5

Fig. 4. Vapor concentration distribution over the radius inside the bubble at the stage of compression
(t = −530 nsec with respect to the collapse time) for a0 = 1 mm, α = 0.075, and k0 = 0.99 (the
points are values of the concentration in calculation cells).

Fig. 5. Rebound radius (1) and maximum temperature inside the bubble (2) versus initial vapor
concentration for a0 = 1 mm and α = 0.075.

processes on its wall. Because of a decrease in vapor mass during bubble compression, high pressure and temperature
are reached inside the bubble, which causes bubble luminescence. Results of the numerical calculations are in good
agreement with experimental data.

The investigation performed shows that gas diffusion from the ambient liquid has virtually no effect on the
dynamics of the vapor cavity. However, the presence of even small amounts of gas inside the bubble (about 1% of
the vapor mass) leads to considerable weakening of collapse.
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